

Plot No. 2, Knowledge Park-III, Greater Noida (U.P.) -201306

POST GRADUATE DIPLOMA IN MANAGEMENT (2024-25) END TERM EXAMINATION (TERM-III)

Subject Name: Production, Planning and Control Sub. Code: PGO31

Time: **02.00 hrs** Max Marks: **40**

Note: All questions are compulsory. Section A carries 12 marks: 6 questions of 2 marks each, Section B carries 18 marks, having 3 questions (with internal choice questions in each) of 6 marks each, and Section C carries 10 marks, one Case Study having 2 questions of 5 marks each.

<u>SECTION - A</u>		
Attempt all questions. All questions are compulsory. 23	<6 = 12 M	arks
Questions	CO	Bloom's Level
Q. 1: (A). Why is lead time variability a problem for MRP?	CO1	
Q. 1: (B). Explain the concept of fundamental process analysis.		
Q. 1: (C). How can product variability affect line balancing?		
Q. 1: (D). How does a job shop differ from mass production?	CO2	
Q. 1: (E). What is a planned order in MRP?		
Q. 1: (F). How does inaccurate demand forecasting affect the MPS?		
<u>SECTION – B</u>		
All questions are compulsory (Each question has an internal choice. Attempt	•	
· · · · · · · · · · · · · · · · · · ·	x 3 = 18 N	
Questions	CO	Bloom's Level
Q. 2: (A). What does an imbalanced assembly line look like? With a	CO3	
schematic diagram, explain how imbalancing can be corrected and provide a		
theoretical solution for improving it.		
Or		
Q. 2: (B). With a suitable diagram, explain how line balancing is needed and		
important for an optimized production process. How can line balancing be		
achieved without any over expenses?		
(internal choices with two questions corresponding to the same CO)		
Q. 3: (A). A manufacturing company produces eco-friendly water bottles		
using a five-step process: molding, cooling, trimming, printing, and		
packaging. The time taken for each step per unit is as follows: molding (6		
min), cooling (8 min), trimming (4 min), printing (3 min), and packaging (2		
min). The customer demand is 360 bottles per 6-hour shift. Using this	CO4	
information, identify the cycle time and the bottleneck process. Explain how		
bottleneck analysis helps in improving production efficiency in this case.		
Ör		
Q. 3: (B). For the same manufacturing company, discuss what would typical	ly	
be included in the lead time and how it relates to production, and provide		
recommendations to align the production process with customer demand.		

(internal choices with two questions corresponding to the same CO)		
Q. 4: (A). What assumptions shall be taken into consideration for getting a basic EOQ model? Explain the limitations due to which EOQ will work effectively. Does EOQ really work out?	CO5	
Or \mathbf{O} (B) A compared a 2000 has annually of new material to analyze its		
Q. 4: (B). A company needs 3000 kg annually of raw material to produce its products. The cost of Rs 300 incurred to place an order, the cost of raw		
material is Rs 150 per kg, and the cost of carrying 1 kg of raw material per year is Rs 10. So, calculate EOQ. Also, find how many orders can be placed in		
a year.		
(internal choices with two questions corresponding to the same CO)		

SECTION - C

Read the case and answer the questions

5×02 = 10 Marks

Questions		CO	Bloom's Level	
Q. 5: Case Study: Green Supply Chain at Eco Fresh Appliances Ltd.			CO6	
Eco Fresh Appliances Ltd. manufactures energy-efficient refrigerators using an environmentally responsible supply chain. The company emphasizes sustainable sourcing, waste reduction, and energy-efficient operations. The production objective is estimated to be 120 units per day. The production takes place for 8 hours per day. Workstations in the Assembly Line have the following information:				
Workstation	Task Description	Time per Unit (minutes)		
1. Frame Assembly	Assembling main frame	6		
2. Insulation Fill	Filling eco-friendly foam	8		
3. Door Assembly	Attaching the door and seals	10		
4. Electrical Fitting	Wiring and electronics	7		
5. Quality Testing	Energy efficiency and safety	5		
6. Final Packaging	Boxing and labeling	4		
Does the ac Q. 5 : (B). Provide an	kt time, cycle time, and fin tual throughput increase w interpretation & bottleneck assigned one CO. Both que	ith queuing delays?		

COs	Question No.	Marks Allocated
CO1	Q1	6
CO2	Q1	6
CO3	Q2	6
CO4	Q3	6
CO5	Q4	6
CO6	Q5	10

Kindly fill in the total marks allocated to each CO's in the table below:

(Please ensure the conformity of the CO-wise marks allocation as per your TLEP.)

Bloom's Taxonomy Levels are given below for your ready reference:

L1= Remembering L2= Understanding L3= Apply L4= Analyze L5= Evaluate L6= Create